Hi,
we had some discussion in the chat.
Here is my take on the spiral.
Code is not meant to be good python, but to be readable.
Note I got rid of the first term for z, (1-1/N), as this creates a hole on the top.
Features:
-A factor to pronounciate the top (2.0 seems fine)
-Randomness, but only in z direction (this can of course be changed)
-Nice spatial pattern
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 | import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import random
def NOZ(v):
norm = np.linalg.norm(v)
if norm == 0:
return v
return v / norm
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
nrays = 16
nsub = 4
invtupdate = 20
factor = 2.0
randomratio = 0.02
n2 = nrays * nsub
n = n2 * 2
nodes = np.arange(n2)
nodes2 = nodes ** factor / float(n2) ** (factor -1 )
colors = cm.rainbow(np.linspace(0, 1, invtupdate))
golden_angle = np.pi * (3 - np.sqrt(5))
for k in range(invtupdate):
thetaoffset = 360/invtupdate*k/180.0*np.pi
for l in range(n2):
z = (1- (2.0 * nodes2[l]) / (n - 1))
theta = nodes[l] * golden_angle
radius = np.sqrt(1-z**2)
xs = radius * np.cos(theta+thetaoffset)
ys = radius * np.sin(theta+thetaoffset)
z = z + random.uniform(randomratio, -1*randomratio)
z = max(z,0)
V = NOZ([xs, ys, z])
ax.scatter(V[0], V[1], V[2], color=colors[k] )
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()
|
Every color is one frame.